From 324fb51fe3e30941581b8cec692c1cf4a0f255c7 Mon Sep 17 00:00:00 2001 From: Lars Tveito Date: Tue, 19 Nov 2019 20:11:28 +0100 Subject: [PATCH] Update examples --- committees.org | 89 +++++++++++++++++++++++++++++++------------------- 1 file changed, 56 insertions(+), 33 deletions(-) diff --git a/committees.org b/committees.org index 121aa52..7cd6095 100644 --- a/committees.org +++ b/committees.org @@ -54,7 +54,9 @@ cry for help. $\mathcal{M}$ such that $\mathcal{M} \models \phi$. In general, this is an undecidable problem. However, there are theories within first order logic that are decidable. SMT solvers can produce models that satisfy a set of - formulas for many useful theories, some of which are satisfiable. + formulas for many useful theories, some of which are satisfiable. It is + natural to think of SMT as a generalization of SAT, which is satisfiability + for propositional logic. The solver we will be using is [[https://github.com/Z3Prover/z3][Z3]]. @@ -159,8 +161,8 @@ cry for help. - $P_{Int} = \{<, =\}$ where the predicate symbols $<, =$ has type signature $Int \times Int$. - In Z3, the type signature function- and predicate symbols informs Z3 of what - theory it should apply. + In Z3, the type signature of function- and predicate symbols informs Z3 of + what theory it should apply. * Back to the problem @@ -318,20 +320,20 @@ cry for help. Calling ~check_instance(example_instance())~ returns a model: #+BEGIN_EXAMPLE - [frozenset({0, 1}) = 83, - frozenset({0, 2}) = 47, - frozenset({0, 5}) = 30, - frozenset({2, 3}) = 0, - frozenset({1, 2}) = 3, - frozenset({1, 3}) = 60, - frozenset({2, 5}) = 0, - frozenset({1, 5}) = 0, - frozenset({2, 4}) = 60, - frozenset({4, 5}) = 0, - frozenset({0, 4}) = 0, + [frozenset({0, 1}) = 150, + frozenset({0, 2}) = 10, + frozenset({2, 3}) = 56, + frozenset({1, 3}) = 0, + frozenset({2, 5}) = 7, frozenset({3, 5}) = 0, - frozenset({3, 4}) = 0, + frozenset({0, 5}) = 0, + frozenset({1, 2}) = 0, + frozenset({4, 5}) = 23, + frozenset({1, 5}) = 0, frozenset({0, 3}) = 0, + frozenset({0, 4}) = 0, + frozenset({2, 4}) = 37, + frozenset({3, 4}) = 0, frozenset({1, 4}) = 0] #+END_EXAMPLE @@ -355,12 +357,19 @@ cry for help. This outputs the something like: #+BEGIN_EXAMPLE - {0, 1}: 23 - {0, 2}: 110 - {0, 5}: 23 - {1, 3}: 60 - {1, 5}: 7 - {1, 4}: 60 + 0: 160/160 + 1: 150/150 + 2: 110/110 + 3: 56/60 + 4: 60/60 + 5: 30/30 + + 0, 1: 150 + 0, 2: 10 + 2, 3: 56 + 2, 4: 37 + 2, 5: 7 + 4, 5: 23 #+END_EXAMPLE Note the /something like/. There are multiple ways to satisfy this set of @@ -410,12 +419,19 @@ cry for help. example). #+BEGIN_EXAMPLE - {2, 3}: 56 - {0, 1}: 137 - {2, 5}: 7 - {0, 5}: 23 - {2, 4}: 47 - {1, 4}: 13 + 0: 160/160 + 1: 150/150 + 2: 110/110 + 3: 60/60 + 4: 60/60 + 5: 26/30 + + 0, 1: 137 + 0, 5: 23 + 1, 4: 13 + 2, 3: 60 + 2, 4: 47 + 2, 5: 3 #+END_EXAMPLE ** Dealing with /should/ @@ -459,12 +475,19 @@ cry for help. #+END_SRC #+BEGIN_EXAMPLE - {0, 2}: 50 - {1, 3}: 60 - {1, 5}: 7 - {2, 4}: 60 - {0, 5}: 23 - {0, 1}: 83 + 0: 160/160 + 1: 150/150 + 2: 106/110 + 3: 60/60 + 4: 60/60 + 5: 30/30 + + 0, 1: 87 + 0, 2: 43 + 0, 5: 30 + 1, 2: 3 + 1, 3: 60 + 2, 4: 60 #+END_EXAMPLE ** Optimize for capacities