Emacs configuration file

Lars Tveito

December 29, 2013

Contents

I_Aboutl

[2

Configurations|

DT MOtal . .« o o o e
D0 Packagd . . o o

2.3 Requirel

2.0 Modesl

Language mode specific|

3.1 Lispl
3.1.1 Emacs Lisp|
[3.1.2 Common lisp|

1 About

This is a Emacs configuration file written in org-mode. There are a few
reasons why I wanted to do this. My .emacs.d/ was a mess, and needed
a proper clean-up. Also I like keeping all my configurations in a single file,
using org-mode I can keep this file organized. 1 aim to briefly explain all my
configurations.

2 Configurations

2.1 Meta

Emacs can only load .el-files. We can use C-c C-v t torun org-babel-tangle,
which extracts the code blocks from the current file into a source-specific file
(in this case a .el-file).

To avoid doing this each time a change is made we can add a function to
the after-save-hook ensuring to always tangle and byte-compile the org-
document after changes.

(defun init-hook ()
"If the current buffer is ’init.org’ the code-blocks are
tangled, and the tangled file is compiled.”
(when (equal (buffer-file-name)
(expand-file-name (concat user-emacs-directory "init.org")))
(org-babel-tangle)
(byte-compile-file (concat user-emacs-directory "init.el"))))

(add-hook ’after-save-hook ’init-hook)

2.2 Package

Managing extensions for Emacs is simplified using package which is built in
to Emacs 24 and newer. To load downloaded packages we need to initialize
package.

(require ’package)
(package-initialize)

Packages can be fetched from different mirrors, melpal is the largest archive
and is well maintained.

(add-to-1list ’package-archives
"("MELPA" . "http://melpa.milkbox.net/packages/") t)

We can define a predicate that tells us wither or not the newest version of a
package is installed.

(defun newest-package-installed-p (package)
"Return true if the newest available PACKAGE is installed.”
(when (package-installed-p package)
(letx ((local-pkg-desc (or (assq package package-alist)
(assq package package--builtins)))
(newest-pkg-desc (assq package package-archive-contents)))
(version-list-= (package-desc-vers (cdr local-pkg-desc))
(package-desc-vers (cdr newest-pkg-desc))))))

Let’s write a function to install a package if it is not installed or upgrades it
if a new version has been released. Here our predicate comes in handy.

(defun upgrade-or-install-package (package)
"Unless the newest available version of PACKAGE is installed
PACKAGE is installed and the current version is deleted.”
(unless (newest-package-installed-p package)
(let ((pkg-desc (assq package package-alist)))
(when pkg-desc
(package-delete (symbol-name package)
(package-version-join
(package-desc-vers (cdr pkg-desc)))))
(package-install package))))

Now we can use the function above to make sure packages are installed and
up to date. Here are some packages I find useful (some of these configurations
are also dependent on them).

(package-refresh-contents)
(dolist (package

"(ac-geiser ; Auto-complete backend for geiser
ac-slime ; An auto-complete source using slime completions
ace-jump-mode ; quick cursor location minor mode
auto-compile ; automatically compile Emacs Lisp libraries
auto-complete ; auto completion

http://melpa.milkbox.net/#/

elscreen ;
expand-region ;
flx-ido ;
ido-vertical-mode ;
geiser ;
haskell-mode ;
jedi ;
magit ;
markdown-mode ;
monokai-theme ;
move-text ;
multiple-cursors ;
org ;
paredit ;
pretty-lambdada ;
smex ;

)
(upgrade-or-install-package p

2.3 Require

window session manager

Increase selected region by semantic units
flx integration for ido

Makes ido-mode display vertically.

GNU Emacs and Scheme talk to each other

A Haskell editing mode

Python auto-completion for Emacs

control Git from Emacs

Emacs Major mode for Markdown-formatted files.
A fruity color theme for Emacs.

Move current line or region with M-up or M-down
Multiple cursors for Emacs.

Outline-based notes management and organizer
minor mode for editing parentheses

the word ‘lambda’ as the Greek letter.

M-x interface with Ido-style fuzzy matching.

ackage))

Some features are not loaded by default to minimize initialization time, so

they have to be required (or loaded

(dolist (feature
’(auto-compile

auto-complete-config
jedi
pretty-lambdada
ox-latex
recentf
tex-mode

))

(require feature))

2.4 Sane defaults

, if you will).

; auto-compile .el files

; a configuration for auto-complete-mode
; auto-completion for python

; show ’lambda’ as the greek letter.

; the latex-exporter (from org)

; recently opened files

; TeX, LaTeX, and S1iTeX mode commands

These are what I consider to be saner defaults.

We can set variables to whatever value we’d like using setq.

(setq initial-scratch-message nil ; Clean scratch buffer.
inhibit-startup-message t ; No splash screen please.
default-input-method "TeX" ; Use TeX when toggeling input method.
doc-view-continuous t ; At page edge goto next/previous.
echo-keystrokes 0.1 ; Show keystrokes asap.

)

Some variables are buffer-local, so changing them using setq will only change
them in a single buffer. Using setq-default we change the buffer-local
variable’s default value.

(setg-default fill-column 76 ; Maximum line width.
indent-tabs-mode nil ; Use spaces instead of tabs.
split-width-threshold 100 ; Split verticly by default.
auto-fill-function ’do-auto-fill ; Auto-fill-mode everywhere.
)

The load-path specifies where Emacs should look for .el-files (or Emacs
lisp files). I have a directory called site-1lisp where I keep all extensions
that have been installed manually (these are mostly my own projects).

(let ((default-directory (concat user-emacs-directory "site-lisp/")))
(normal-top-level-add-to-load-path ’("."))
(normal-top-level-add-subdirs-to-load-path))

Answering yes and no to each question from Emacs can be tedious, a single
y or n will suffice.

(fset ’yes-or-no-p ’y-or-n-p)
To avoid file system clutter we put all auto saved files in a single directory.

(defvar emacs-autosave-directory
(concat user-emacs-directory "autosaves/")
"This variable dictates where to put auto saves. It is set to a
directory called autosaves located wherever your .emacs.d/ is
located.")

;; Sets all files to be backed up and auto saved in a single directory.
(setqg backup-directory-alist
“((".%" . emacs-autosave-directory))

auto-save-file-name-transforms
“((".*" ,emacs-autosave-directory t)))

Set utf-8 as preferred coding system.
(set-language-environment "UTF-8")

By default the narrow-to-region command is disabled and issues a warning,
because it might confuse new users. I find it useful sometimes, and don’t
want to be warned.

(put ’narrow-to-region ’disabled nil)

Call auto-complete default configuration, which enables auto-complete
globally.

(ac-config-default)
Automaticly revert doc-view-buffers when the file changes on disk.

(add-hook ’doc-view-mode-hook ’auto-revert-mode)

2.5 Modes

There are some modes that are enabled by default that I don’t find partic-
ularly useful. We create a list of these modes, and disable all of these.

(dolist (mode

" (tool-bar-mode ; No toolbars, more room for text.
scroll-bar-mode ; No scroll bars either.
blink-cursor-mode ; The blinking cursor gets old.

)

(funcall mode 0))

Let’s apply the same technique for enabling modes that are disabled by
default.

(dolist (mode

" (abbrev-mode ; E.g. sopl -> System.out.println.
auto-compile-on-load-mode ; Compile .el files on load ...
auto-compile-on-save-mode ; ... and save.
column-number-mode ; Show column number in mode line.
delete-selection-mode ; Replace selected text.
recentf-mode ; Recently opened files.

show-paren-mode ; Highlight matching parentheses.

)
(funcall mode 1))

This makes .md-files open in markdown-mode.

(add-to-1list ’auto-mode-alist ’("\\.md\\’" . markdown-mode))

2.6 Visual

Change the color-theme to monokai (downloaded using package).
(load-theme ’monokai t)
Use the [Inconsolatal font if it’s installed on the system.

(when (member "Inconsolata” (font-family-list))
(set-face-attribute ’default nil :font "Inconsolata-13"))

2.7 Ido

Interactive do (or ido-mode) changes the way you switch buffers and open
files/directories. Instead of writing complete file paths and buffer names
you can write a part of it and select one from a list of possibilities. Us-
ing ido-vertical-mode changes the way possibilities are displayed, and
flx-ido-mode enables fuzzy matching.

(dolist (mode

’ (ido-mode ; Interactivly do.
ido-everywhere ; Use Ido for all buffer/file reading.
ido-vertical-mode ; Makes ido-mode display vertically.
flx-ido-mode ; Toggle flx ido mode.
)

(funcall mode 1))

We can set the order of file selections in ido. I prioritize source files along
with org- and tex-files.

(setq ido-file-extensions-order
’ (” el" n scm” n 1isp" n javall n Cll n h" n Org” n te)(”))

http://www.levien.com/type/myfonts/inconsolata.html

Sometimes when using ido-switch-buffer the *Messages* buffer get in the
way, so we set it to be ignored (it can be accessed using C-h e, so there is
really no need for it in the buffer list).

(add-to-list ’ido-ignore-buffers "*Messages*")

To make M-x behave more like ido-mode we can use the smex package. It
needs to be initialized, and we can replace the binding to the standard
execute-extended-command with smex.

(smex-initialize)
(global-set-key (kbd "M-x") ’smex)

2.8 Calendar

Define a function to display week numbers in calender-mode. The snippet
is from [EmacsWiki.

(defun calendar-show-week (arg)
"Displaying week number in calendar-mode."
(interactive "P")
(copy-face font-lock-constant-face ’calendar-iso-week-face)
(set-face-attribute
’calendar-iso-week-face nil :height 0.7)
(setq calendar-intermonth-text
(and arg
"(propertize
(format
"%2d"
(car (calendar-iso-from-absolute
(calendar-absolute-from-gregorian
(list month day year)))))
’font-lock-face ’calendar-iso-week-face))))

Evaluate the toggle-calendar-show-week function.
(calendar-show-week t)
Set Monday as the first day of the week, and set my location.

(setq calendar-week-start-day 1
calendar-latitude 60.0

http://www.emacswiki.org/emacs/CalendarWeekNumbers

calendar-longitude 10.7
calendar-location-name "Oslo, Norway")

2.9 Flyspell

Flyspell offers on-the-fly spell checking. We can enable flyspell for all text-
modes with this snippet.

(add-hook ’text-mode-hook ’turn-on-flyspell)

To use flyspell for programming there is flyspell-prog-mode, that only en-
ables spell checking for comments and strings. We can enable it for all pro-
gramming modes using the prog-mode-hook. Flyspell interferes with auto-
complete mode, but there is a workaround provided by auto complete.

(add-hook ’prog-mode-hook ’flyspell-prog-mode)
(ac-flyspell-workaround)

2.10 Org

I use org-agenda for appointments and such.

(setq org-agenda-start-on-weekday nil ; Show agenda from today.
org-agenda-files ’ ("~/Dropbox/life.org") ; A list of agenda files.
org-agenda-default-appointment-duration 120 ; 2 hours appointments.

)

When editing org-files with source-blocks, we want the source blocks to be
themed as they would in their native mode.

(setq org-src-fontify-natively t)

2.11 Interactive functions

To search recent files useing ido-mode we add this snippet from EmacsWiki.

(defun recentf-ido-find-file ()
"Find a recent file using Ido."
(interactive)
(let ((f (ido-completing-read "Choose recent file: " recentf-list nil t)))

http://www.emacswiki.org/emacs/CalendarWeekNumbers

(when f
(find-file f))))

just-one-space removes all whitespace around a point - giving it a negative
argument it removes newlines as well. We wrap a interactive function around
it to be able to bind it to a key.

(defun remove-whitespace-inbetween ()
"Removes whitespace before and after the point.”
(interactive)
(just-one-space -1))

This interactive function switches you to a shell, and if triggered in the
shell it switches back to the previous buffer.

(defun switch-to-shell ()
"Jumps to eshell or back."”
(interactive)
(if (string= (buffer-name) "xshellx")
(switch-to-prev-buffer)
(shell)))

To duplicate either selected text or a line we define this interactive function.

(defun duplicate-thing ()

"Ethier duplicates the line or the region”

(interactive)

(save-excursion

(let ((start (if (region-active-p) (region-beginning) (point-at-bol)))
(end (if (region-active-p) (region-end) (point-at-eol))))
(goto-char end)
(unless (region-active-p)
(newline))

(insert (buffer-substring start end)))))

To tidy up a buffer we define this function borrowed from simenheg.

(defun tidy
"Ident, untabify and unwhitespacify current buffer, or region if active.”
(interactive)
(let ((beg (if (region-active-p) (region-beginning) (point-min)))
(end (if (region-active-p) (region-end) (point-max))))
(indent-region beg end)

10

https://github.com/simenheg

(whitespace-cleanup)
(untabify beg (if (< end (point-max)) end (point-max)))))

2.12 Key bindings

Bindings for expand-region.

(global-set-key (kbd "C-’") ’er/expand-region)
(global-set-key (kbd "C-;") ’er/contract-region)

Bindings for multiple-cursors.

(global-set-key (kbd "C-c e’
(global-set-key (kbd "C-c a
(global-set-key (kbd "C-c n

"y ’mc/edit-lines)
"y ’mc/mark-all-like-this)
") ’mc/mark-next-like-this)

Bindings for Magitl

(global-set-key (kbd "C-c m") ’magit-status)
Bindings for ace-jump-mode.

(global-set-key (kbd "C-c SPC") ’ace-jump-mode)
Bind some native Emacs functions.

(global-set-key (kbd "C-c t") ’org-agenda-list)
(global-set-key (kbd "C-x k") "kill-this-buffer)
(global-set-key (kbd "C-x C-r") ’recentf-ido-find-file)

Bind the functions defined [abovel

(global-set-key (kbd "C-c j") ’remove-whitespace-inbetween)
(global-set-key (kbd "C-x t") ’switch-to-shell)
(global-set-key (kbd "C-c d") "duplicate-thing)

(global-set-key (kbd "<C-tab>") ’tidy)
Bindings for move-text.

(global-set-key (kbd "<M-S-up>") "move-text-up)
(global-set-key (kbd "<M-S-down>") ’'move-text-down)

11

https://github.com/magnars/expand-region.el
https://github.com/magnars/multiple-cursors.el
http://magit.github.io
https://github.com/winterTTr/ace-jump-mode

2.13 Advice

An advice can be given to a function to make it behave differently. This
advice makes eval-last-sexp (bound to C-x C-e) replace the sexp with the
value.

(defadvice eval-last-sexp (around replace-sexp (arg) activate)
"Replace sexp when called with a prefix argument.”
(if arg
(let ((pos (point)))
ad-do-it
(goto-char pos)
(backward-kill-sexp)
(forward-sexp))
ad-do-it))

3 Language mode specific

3.1 Lisp

Pretty-lambda provides a customizable variable pretty-lambda-auto-modes
that is a list of common lisp modes. Here we can add some extra
lisp-modes. We run the pretty-lambda-for-modes function to activate
pretty-lambda-mode in lisp modes.

(dolist (mode ’(slime-repl-mode inferior-lisp-mode inferior-scheme-mode))
(add-to-list ’pretty-lambda-auto-modes mode))
(pretty-lambda-for-modes)

I use Paredit when editing lisp code, we enable this for all lisp-modes in the
pretty-lambda-auto-modes list.

(dolist (mode pretty-lambda-auto-modes)
;; add paredit-mode to all mode-hooks
(add-hook (intern (concat (symbol-name mode) "-hook")) ’paredit-mode))

12

3.1.1 Emacs Lisp

In emacs-1isp-mode we can enable eldoc-mode to display information about
a function or a variable in the echo area.

(add-hook ’emacs-1lisp-mode-hook ’turn-on-eldoc-mode)
(add-hook ’lisp-interaction-mode-hook ’turn-on-eldoc-mode)

3.1.2 Common lisp

I use Slime along with 1isp-mode to edit Common Lisp code. Slime provides
code evaluation and other great features, a must have for a Common Lisp
developer. |Quicklisp| is a library manager for Common Lisp, and you can
install Slime following the instructions from the site along with this snippet.

n

(when (file-exists-p "~/quicklisp/slime-helper.elc")
(load (expand-file-name "~/quicklisp/slime-helper.elc”)))

We can specify what Common Lisp program Slime should use (I use SBCL).
(setq inferior-lisp-program "shcl”)

To improve auto completion for Common Lisp editing we can use ac-slime
which uses slime completions as a source.

(add-hook ’slime-mode-hook ’set-up-slime-ac)
(add-hook ’slime-repl-mode-hook ’set-up-slime-ac)

(eval-after-load "auto-complete”
’(add-to-list ’ac-modes ’slime-repl-mode))

3.1.3 Scheme

Geiser| provides features similar to Slime for Scheme editing. Everything
works pretty much out of the box, the only thing we need to add is the auto
completion.

(add-hook ’geiser-mode-hook ’ac-geiser-setup)
(add-hook ’geiser-repl-mode-hook ’ac-geiser-setup)
(eval-after-load "auto-complete”

’(add-to-list ’ac-modes ’geiser-repl-mode))

13

http://www.common-lisp.net/project/slime/
http://www.quicklisp.org/beta/
http://www.nongnu.org/geiser/

3.2 Java and C

The c-mode-common-hook is a general hook that work on all C-like languages
(C, C++, Java, etc...). I like being able to quickly compile using C-c C-c
(instead of M-x compile), a habit from latex-mode.

(defun c-setup ()
(local-set-key (kbd "C-c C-c") ’compile))
(add-hook ’c-mode-common-hook ’c-setup)

Some statements in Java appear often, and become tedious to write out. We
can use abbrevs to speed this up.

(define-abbrev-table ’java-mode-abbrev-table
"(("psv" "public static void main(String[] args) {" nil 0)
("sopl” "System.out.println” nil 0)
("sop" "System.out.printf” nil 0)))

To be able to use the abbrev table defined above, abbrev-mode must be
activated.

(defun java-setup ()
(abbrev-mode t)
(setg-local compile-command (concat "javac " (buffer-name))))

(add-hook ’java-mode-hook ’java-setup)

3.3 Assembler

When writing assembler code I use # for comments. By defining comment-start
we can add comments using M-; like in other programming modes. Also in
assembler should one be able to compile using C-c C-c.

(defun asm-setup ()
(setq comment-start "#")
(local-set-key (kbd "C-c C-c") ’compile))

(add-hook ’asm-mode-hook ’asm-setup)

14

3.4 BIEX

. tex-files should be associated with latex-mode instead of tex-mode.
(add-to-1list ’auto-mode-alist ’("\\.tex\\’"” . latex-mode))

I like using the Minted| package for source blocks in IATEX. To make org use
this we add the following snippet.

(add-to-list ’org-latex-packages-alist ’("" "minted"))
(setq org-latex-listings ’'minted)

Because Minted uses Pygments (an external process), we must add the
-shell-escape option to the org-latex-pdf-process commands.

(setq org-latex-pdf-process
(mapcar
(lambda (str)
(concat "pdflatex -shell-escape "
(substring str (string-match "-" str))))
org-latex-pdf-process))

3.5 Python

Jedi offers very nice auto completion for python-mode. Mind that it is de-
pendent on some python programs as well, so make sure you follow the
instructions from the site.

(setqg jedi:server-command
(cons "python3"” (cdr jedi:server-command))
python-shell-interpreter "python3")
(add-hook ’python-mode-hook ’jedi:setup)
(setq jedi:complete-on-dot t)
(add-hook ’python-mode-hook ’jedi:ac-setup)

3.6 Haskell

haskell-doc-mode is similar to eldoc, it displays documentation in the echo
area. Haskell has several indentation modes - I prefer using haskell-indent.

(add-hook ’"haskell-mode-hook ’turn-on-haskell-doc-mode)
(add-hook ’haskell-mode-hook ’turn-on-haskell-indent)

15

https://code.google.com/p/minted/
https://code.google.com/p/minted/
http://pygments.org
http://tkf.github.io/emacs-jedi/released/

	About
	Configurations
	Meta
	Package
	Require
	Sane defaults
	Modes
	Visual
	Ido
	Calendar
	Flyspell
	Org
	Interactive functions
	Key bindings
	Advice

	Language mode specific
	Lisp
	Emacs Lisp
	Common lisp
	Scheme

	Java and C
	Assembler
	LaTeX
	Python
	Haskell

