Emacs configuration file

Lars Tveito

March 23, 2014

Contents

I_Aboutl

|2 Configurations|
2.1 Metal

2.11 spel] © .o

13 Language mode specific

................................
[3.1.1 Emacs Lisp| o0

[3.1.2 Common lisp|,

B6 Haskelll. 21
B7 Matlabl. 21
1 About

This is a Emacs configuration file written in org-mode. There are a few
reasons why I wanted to do this. My .emacs.d/ was a mess, and needed
a proper clean-up. Also I like keeping all my configurations in a single file,
using org-mode I can keep this file organized. 1 aim to briefly explain all my
configurations.

2 Configurations

2.1 Meta

Emacs can only load . el-files. We can use C-c C-v t torun org-babel-tangle,
which extracts the code blocks from the current file into a source-specific file
(in this case a .el-file).

To avoid doing this each time a change is made we can add a function to
the after-save-hook ensuring to always tangle and byte-compile the org-
document after changes.

(defun init-hook ()
"If the current buffer is ’init.org’ the code-blocks are
tangled, and the tangled file is compiled.”
(when (equal (buffer-file-name)
(expand-file-name (concat user-emacs-directory "init.org")))
(org-babel-tangle)
(byte-compile-file (concat user-emacs-directory "init.el”))))

(add-hook ’after-save-hook ’init-hook)

2.2 Package

Managing extensions for Emacs is simplified using package which is built in
to Emacs 24 and newer. To load downloaded packages we need to initialize
package.

(require ’package)
(package-initialize)

Packages can be fetched from different mirrors, melpalis the largest archive
and is well maintained.

(add-to-1list ’package-archives
"("MELPA" . "http://melpa.milkbox.net/packages/") t)

We can define a predicate that tells us wither or not the newest version of a
package is installed.

(defun newest-package-installed-p (package)
"Return true if the newest available PACKAGE is installed.”
(when (package-installed-p package)
(let* ((local-pkg-desc (or (assq package package-alist)
(assq package package--builtins)))
(newest-pkg-desc (assq package package-archive-contents)))
(and local-pkg-desc newest-pkg-desc
(version-list-= (package-desc-vers (cdr local-pkg-desc))
(package-desc-vers (cdr newest-pkg-desc)))))))

Let’s write a function to install a package if it is not installed or upgrades it
if a new version has been released. Here our predicate comes in handy.

(defun upgrade-or-install-package (package)
"Unless the newest available version of PACKAGE is installed
PACKAGE is installed and the current version is deleted.”
(unless (newest-package-installed-p package)
(let ((pkg-desc (assq package package-alist)))
(when pkg-desc
(package-delete (symbol-name package)
(package-version-join
(package-desc-vers (cdr pkg-desc)))))
(package-install package))))

http://melpa.milkbox.net/#/

The package-refresh-contents function downloads archive descriptions,
this is a major bottleneck in this configuration. To avoid this we can try
to only check for updates once every day or so. Here are three variables.
The first specifies how often we should check for updates. The second spec-
ifies wither one should update during the initialization. The third is a path
to a file where a time-stamp is stored in order to check when packages were
updated last.

(defvar days-between-updates 1)
(defvar do-package-update-on-init t)
(defvar package-last-update-file
(expand-file-name (concat user-emacs-directory ".package-last-update”)))

The tricky part is figuring out when the last time the Emacs was updated!
Here is a hacky way of doing it, using time-stamps. By adding a time-stamp
to the a file, we can determine wither or not to do an update. After that we
must run the time-stamp-function to update the time-stamp.

(require ’time-stamp)
;5 Open the package-last-update-file
(with-temp-file package-last-update-file
(if (file-exists-p package-last-update-file)
(progn
;5 Insert it’s original content’s.
(insert-file-contents package-last-update-file)
(let ((start (re-search-forward time-stamp-start nil t))
(end (re-search-forward time-stamp-end nil t)))
(when (and start end)
;5 Assuming we have found a time-stamp, we check determine if it’s
;5 time to update.
(setq do-package-update-on-init
(<= days-between-updates
(days-between
(current-time-string)
(buffer-substring-no-properties start end))))
;; Remember to update the time-stamp.
(when do-package-update-on-init
(time-stamp)))))
;5 If no such file exists it is created with a time-stamp.
(insert "Time-stamp: <>")
(time-stamp)))

http://www.gnu.org/software/emacs/manual/html_node/emacs/Time-Stamps.html

Now we can use the function above to make sure packages are installed and
up to date. Here are some packages I find useful (some of these configurations

are also dependent on them).

(when (and do-package-update-on-init
(y-or-n-p "Update all packages?"))

(package-refresh-contents)

(dolist (package
’(ac-geiser

ac-slime
ace-jump-mode
auto-compile
auto-complete
elscreen
expand-region
flx-ido
ido-vertical-mode
geiser
haskell-mode
jedi
magit
markdown-mode
matlab-mode
monokai-theme
move-text
multiple-cursors
org
paredit
powerline
pretty-lambdada
smex))

’

’

Auto-complete backend for geiser

An auto-complete source using slime completions
quick cursor location minor mode
automatically compile Emacs Lisp libraries
auto completion

window session manager

Increase selected region by semantic units
flx integration for ido

Makes ido-mode display vertically.

GNU Emacs and Scheme talk to each other

A Haskell editing mode

Python auto-completion for Emacs

control Git from Emacs

Emacs Major mode for Markdown-formatted files.
MATLAB integration with Emacs.

A fruity color theme for Emacs.

Move current line or region with M-up or M-down
Multiple cursors for Emacs.

Outline-based notes management and organizer
minor mode for editing parentheses

Rewrite of Powerline

the word ‘lambda’ as the Greek letter.

; M-x interface with Ido-style fuzzy matching.

(upgrade-or-install-package package))

;3 This package is only relevant for Mac 0S X.

(when (memg window-system ’(mac ns))
(upgrade-or-install-package ’exec-path-from-shell)))

2.3 Mac OS X

I run this configuration mostly on Mac OS X, so we need a couple of settings
to make things work smoothly. In the package section exec-path-from-shell
is included (only if you're running OS X), this is to include environment-
variables from the shell. It makes useing Emacs along with external processes
a lot simpler. I also prefer using the Command-key as the Meta-key.

(when (memg window-system ’(mac ns))
(setq mac-option-modifier nil
mac-command-modifier ’meta
x-select-enable-clipboard t)
(exec-path-from-shell-initialize))

2.4 Require

Some features are not loaded by default to minimize initialization time, so
they have to be required (or loaded, if you will).

(dolist (feature

" (auto-compile ; auto-compile .el files
auto-complete-config ; a configuration for auto-complete-mode
jedi ; auto-completion for python
matlab ; matlab-mode
ob-matlab ; org-babel matlab
ox-latex ; the latex-exporter (from org)
ox-md ; Markdown exporter (from org)
pretty-lambdada ; show ’lambda’ as the greek letter.
recentf ; recently opened files
tex-mode)) ; TeX, LaTeX, and S1iTeX mode commands

(require feature))

2.5 Sane defaults

These are what I consider to be saner defaults.
We can set variables to whatever value we’d like using setq.

(setq initial-scratch-message nil ; Clean scratch buffer.
inhibit-startup-message t ; No splash screen please.

default-input-method "TeX" ; Use TeX when toggeling input method.

ring-bell-function ’ignore ; Quite as a mouse.
doc-view-continuous t ; At page edge goto next/previous.
echo-keystrokes 0.1) ; Show keystrokes asap.

;; Some mac-bindings interfere with Emacs bindings.
(when (boundp ’mac-pass-command-to-system)
(setg mac-pass-command-to-system nil))

Some variables are buffer-local, so changing them using setq will only change
them in a single buffer. Using setq-default we change the buffer-local
variable’s default value.

(setg-default fill-column 76 ; Maximum line width.
indent-tabs-mode nil ; Use spaces instead of tabs.
split-width-threshold 100 ; Split verticly by default.

auto-fill-function ’do-auto-fill) ; Auto-fill-mode everywhere.

The load-path specifies where Emacs should look for .el-files (or Emacs
lisp files). I have a directory called site-lisp where I keep all extensions
that have been installed manually (these are mostly my own projects).

(let ((default-directory (concat user-emacs-directory "site-lisp/")))
(when (file-exists-p default-directory)
(normal-top-level-add-to-load-path " ("."))
(normal-top-level-add-subdirs-to-load-path)))

Answering yes and no to each question from Emacs can be tedious, a single
y or n will suffice.

(fset ’yes-or-no-p ’y-or-n-p)
To avoid file system clutter we put all auto saved files in a single directory.

(defvar emacs-autosave-directory
(concat user-emacs-directory "autosaves/")
"This variable dictates where to put auto saves. It is set to a
directory called autosaves located wherever your .emacs.d/ is
located.")

;; Sets all files to be backed up and auto saved in a single directory.
(setq backup-directory-alist
“((".x" . ,emacs-autosave-directory))

auto-save-file-name-transforms
“((".*" ,emacs-autosave-directory t)))

Set utf-8 as preferred coding system.
(set-language-environment "UTF-8")

By default the narrow-to-region command is disabled and issues a warning,
because it might confuse new users. I find it useful sometimes, and don’t
want to be warned.

(put ’narrow-to-region ’disabled nil)

Call auto-complete default configuration, which enables auto-complete
globally.

(ac-config-default)
Automaticly revert doc-view-buffers when the file changes on disk.

(add-hook ’doc-view-mode-hook ’auto-revert-mode)

2.6 Modes

There are some modes that are enabled by default that I don’t find partic-
ularly useful. We create a list of these modes, and disable all of these.

(dolist (mode

" (tool-bar-mode ; No toolbars, more room for text.
scroll-bar-mode ; No scroll bars either.
blink-cursor-mode)) ; The blinking cursor gets old.

(funcall mode 0))

Let’s apply the same technique for enabling modes that are disabled by
default.

(dolist (mode

" (abbrev-mode ; E.g. sopl -> System.out.println.
auto-compile-on-load-mode ; Compile .el files on load ...
auto-compile-on-save-mode ; ... and save.
column-number-mode ; Show column number in mode line.
delete-selection-mode ; Replace selected text.
recentf-mode ; Recently opened files.

show-paren-mode)) ; Highlight matching parentheses.
(funcall mode 1))

This makes .md-files open in markdown-mode

(add-to-list ’auto-mode-alist ’("\\.md\\’" . markdown-mode))

2.7 Visual

Change the color-theme to monokai (downloaded using package).
(load-theme ’monokai t)
Use the Inconsolatal font if it’s installed on the system.

(when (member "Inconsolata-g" (font-family-list))
(set-face-attribute ’default nil :font "Inconsolata-g-11"))

Powerlinel is an extension to customize the mode line. This is modified
version powerline-nano-theme.

(setg-default
mode-line-format
' ("%e”
(:eval
(let* ((active (powerline-selected-window-active))
;; left hand side displays Read only or Modified.
(lhs (list (powerline-raw
(cond (buffer-read-only "Read only")
((buffer-modified-p) "Modified")
(t "")) nil "1)))
;; right side hand displays (line,column).
(rhs (list
(powerline-raw
(concat
"(" (number-to-string (line-number-at-pos))
;; center displays buffer name.
(center (list (powerline-raw "%b" nil))))
(concat (powerline-render 1lhs)

," (number-to-string (current-column)) ")") nil ’r)))

(powerline-fill-center nil (/ (powerline-width center) 2.0))

(powerline-render center)

http://www.levien.com/type/myfonts/inconsolata.html
https://github.com/milkypostman/powerline

(powerline-fill nil (powerline-width rhs))
(powerline-render rhs))))))

This is what it looks like:

(356,18)

2.8 Ido

Interactive do (or ido-mode) changes the way you switch buffers and open
files/directories. Instead of writing complete file paths and buffer names
you can write a part of it and select one from a list of possibilities. Us-
ing ido-vertical-mode changes the way possibilities are displayed, and
flx-ido-mode enables fuzzy matching.

(dolist (mode

’ (ido-mode ; Interactivly do.
ido-everywhere ; Use Ido for all buffer/file reading.
ido-vertical-mode ; Makes ido-mode display vertically.
flx-ido-mode)) ; Toggle flx ido mode.

(funcall mode 1))

We can set the order of file selections in ido. I prioritize source files along
with org- and tex-files.

(setq ido-file-extensions-order
) (H elll n scm” n 1ispll n javall n C” n hll n Org” n teX”))

10

Sometimes when using ido-switch-buffer the *Messages* buffer get in the
way, so we set it to be ignored (it can be accessed using C-h e, so there is
really no need for it in the buffer list).

(add-to-list ’ido-ignore-buffers "*Messages*")

To make M-x behave more like ido-mode we can use the smex package. It
needs to be initialized, and we can replace the binding to the standard
execute-extended-command with smex.

(smex-initialize)
(global-set-key (kbd "M-x") ’smex)

2.9 Calendar

Define a function to display week numbers in calender-mode. The snippet
is from [EmacsWiki.

(defun calendar-show-week (arg)
"Displaying week number in calendar-mode."
(interactive "P")
(copy-face font-lock-constant-face ’calendar-iso-week-face)
(set-face-attribute
’calendar-iso-week-face nil :height 0.7)
(setq calendar-intermonth-text
(and arg
"(propertize
(format
"%2d"
(car (calendar-iso-from-absolute
(calendar-absolute-from-gregorian
(list month day year)))))
’font-lock-face ’calendar-iso-week-face))))

Evaluate the calendar-show-week function.
(calendar-show-week t)
Set Monday as the first day of the week, and set my location.

(setq calendar-week-start-day 1
calendar-latitude 60.0

11

http://www.emacswiki.org/emacs/CalendarWeekNumbers

calendar-longitude 10.7
calendar-location-name "Oslo, Norway")

2.10 Mail

I use mu4e| (which is a part of mu) along with offlineimap on one of my com-
puters. Because the mail-setup wont work without these programs installed
we bind load-mail-setup to nil. If the value is changed to a non-nil value

mail is setup.

(defvar load-mail-setup nil)
(when load-mail-setup
;; We need mude

(require ’mu4e)

;; Some basic mude settings.

(setqg mud4e-maildir "~/.ifimail”
mu4e-sent-folder "/INBOX.Sent"
mu4e-drafts-folder "/INBOX.Drafts"
mude-trash-folder "/INBOX.Trash"
mude-refile-folder "/INBOX.Archive"” ;

mude-get-mail-command "offlineimap”
mu4e-compose-signature "- Lars”
mu4e-update-interval (* 5 60)
mu4e-confirm-quit nil
mu4e-view-show-images t
mu4e-html2text-command

"html2text -utf8")

;; Setup for sending mail.

(setq user-full-name
"Lars Tveito” ;
user-mail-address
"larstvei@ifi.uio.no” ;
smtpmail-smtp-server
"smtp.uio.no” ;
smtpmail-smtp-service 465 ;
smtpmail-stream-type ’ssl ;

12

’

’

’

’

top-level Maildir
folder for sent messages

; unfinished messages

trashed messages

saved messages
offlineimap to fetch mail
Sign my name

update every 5 min

just quit

view images

use utf-8

Your full name

And email-address

Host to mail-server
Port to mail-server
Protocol used for sending

http://www.djcbsoftware.nl/code/mu/mu4e.html
http://www.djcbsoftware.nl/code/mu/
http://docs.offlineimap.org/en/latest/

send-mail-function ’smtpmail-send-it ; Use smpt to send
mail-user-agent ’mud4e-user-agent) ; Use mude!

;; Register file types that can be handled by ImageMagick.
(when (fboundp ’imagemagick-register-types)
(imagemagick-register-types))

(defadvice mude (before show-mu4e (arg) activate)
"Always show mud4e in fullscreen and remember window
configuration.”
(unless arg
(window-configuration-to-register :mud4e-fullscreen)
(mu4e-update-mail-and-index t)
(delete-other-windows)))

(defadvice mud4e-quit (after restore-windows nil activate)
"Restore window configuration."”

(jump-to-register :mud4e-fullscreen))

;; Overwrite the native ’compose-mail’ binding to ’show-mu4e’.
(global-set-key (kbd "C-x m") ’mude))

2.11 Flyspell

Flyspell offers on-the-fly spell checking. We can enable flyspell for all text-

modes with this snippet.

(add-hook ’text-mode-hook ’turn-on-flyspell)

To use flyspell for programming there is flyspell-prog-mode, that only en-
ables spell checking for comments and strings. We can enable it for all pro-
gramming modes using the prog-mode-hook. Flyspell interferes with auto-

complete mode, but there is a workaround provided by auto complete.

(add-hook ’prog-mode-hook ’flyspell-prog-mode)
(ac-flyspell-workaround)

To cycle through dictionary’s we can define a variable containing a cyclic list

of installed language packs.

(defvar ispell-languages ’#1=("english” "norsk" . #1#))

13

Now we only need a small function to change set the language and shift the
list.

(defun cycle-languages ()
"Changes the ispell-dictionary to whatever is the next (or cdr) in the
LANGUAGES (cyclic) list.”
(interactive)
(ispell-change-dictionary
(car (setq ispell-languages (cdr ispell-languages)))))

2.12 Org

I use org-agenda for appointments and such.

(setq org-agenda-start-on-weekday nil ; Show agenda from today.
org-agenda-files ’("~/Dropbox/life.org") ; A list of agenda files.
org-agenda-default-appointment-duration 120) ; 2 hours appointments.

When editing org-files with source-blocks, we want the source blocks to be
themed as they would in their native mode.

(setq org-src-fontify-natively t)

2.13 Interactive functions

To search recent files useing ido-mode we add this snippet from EmacsWiki.

(defun recentf-ido-find-file ()
"Find a recent file using Ido.”
(interactive)
(let ((f (ido-completing-read "Choose recent file: " recentf-list nil t)))
(when f
(find-file f))))

just-one-space removes all whitespace around a point - giving it a negative
argument it removes newlines as well. We wrap a interactive function around
it to be able to bind it to a key.

(defun remove-whitespace-inbetween ()
"Removes whitespace before and after the point.”
(interactive)
(just-one-space -1))

14

http://www.emacswiki.org/emacs/CalendarWeekNumbers

This interactive function switches you to a shell, and if triggered in the
shell it switches back to the previous buffer.

(defun switch-to-shell ()
"Jumps to eshell or back."
(interactive)
(if (string= (buffer-name) "*xshell*")
(switch-to-prev-buffer)
(shell)))

To duplicate either selected text or a line we define this interactive function.

(defun duplicate-thing ()

"Ethier duplicates the line or the region”

(interactive)

(save-excursion

(let ((start (if (region-active-p) (region-beginning) (point-at-bol)))
(end (if (region-active-p) (region-end) (point-at-eol))))
(goto-char end)
(unless (region-active-p)
(newline))

(insert (buffer-substring start end)))))

To tidy up a buffer we define this function borrowed from simenheg,.

(defun tidy ()

"Ident, untabify and unwhitespacify current buffer, or region if active.”
(interactive)

(let ((beg (if (region-active-p) (region-beginning) (point-min)))
(end (if (region-active-p) (region-end) (point-max))))
(indent-region beg end)
(whitespace-cleanup)
(untabify beg (if (< end (point-max)) end (point-max)))))

2.14 Key bindings

Bindings for expand-region.

(global-set-key (kbd "C-’") ’er/expand-region)
(global-set-key (kbd "C-;" "er/contract-region)

Bindings for multiple-cursors.

15

https://github.com/simenheg
https://github.com/magnars/expand-region.el
https://github.com/magnars/multiple-cursors.el

(global-set-key (kbd "C-c e") ’mc/edit-lines)
(global-set-key (kbd "C-c a") ’mc/mark-all-like-this)
(global-set-key (kbd "C-c n") ’mc/mark-next-like-this)

Bindings for Magitl.

(global-set-key (kbd "C-c m") ’magit-status)
Bindings for [ace-jump-mode.

(global-set-key (kbd "C-c SPC") ’ace-jump-mode)
Bindings for move-text.

(global-set-key (kbd "<M-S-up>") "move-text-up)
(global-set-key (kbd "<M-S-down>") ’move-text-down)

Bind some native Emacs functions.

(global-set-key (kbd "C-c s") ’ispell-word)
(global-set-key (kbd "C-c t") ’org-agenda-list)
(global-set-key (kbd "C-x k") "kill-this-buffer)

(global-set-key (kbd "C-x C-r") ’recentf-ido-find-file)
Bind the functions defined [abovel

(global-set-key (kbd "C-c 1" ’cycle-languages)
(global-set-key (kbd "C-c j" ’remove-whitespace-inbetween)
(global-set-key (kbd "C-x t" ’switch-to-shell)
(global-set-key (kbd "C-c d") "duplicate-thing)
(global-set-key (kbd "<C-tab>") ’tidy)

N S

2.15 Advice

An advice can be given to a function to make it behave differently. This
advice makes eval-last-sexp (bound to C-x C-e) replace the sexp with the
value.

(defadvice eval-last-sexp (around replace-sexp (arg) activate)
"Replace sexp when called with a prefix argument.”
(if arg
(let ((pos (point)))
ad-do-it
(goto-char pos)

16

http://magit.github.io
https://github.com/winterTTr/ace-jump-mode

(backward-kill-sexp)
(forward-sexp))
ad-do-it))

Flyspell signals an error if there is no spell-checking tool is installed. We
can advice turn-on=flyspell and flyspell-prog-mode to only try to enable
flyspell if a spell-checking tool is avalible.

(defadvice turn-on-flyspell (around check nil activate)
"Turns on flyspell only if a spell-checking tool is installed.”
(when (executable-find ispell-program-name)
ad-do-it))

(defadvice flyspell-prog-mode (around check nil activate)
"Turns on flyspell only if a spell-checking tool is installed.”
(when (executable-find ispell-program-name)
ad-do-it))

3 Language mode specific

3.1 Lisp

Pretty-lambda provides a customizable variable pretty-lambda-auto-modes
that is a list of common lisp modes. Here we can add some extra
lisp-modes. We run the pretty-lambda-for-modes function to activate
pretty-lambda-mode in lisp modes.

(dolist (mode ’(slime-repl-mode geiser-repl-mode))
(add-to-1list ’pretty-lambda-auto-modes mode))
(pretty-lambda-for-modes)

I use Paredit when editing lisp code, we enable this for all lisp-modes in the
pretty-lambda-auto-modes list.

(dolist (mode pretty-lambda-auto-modes)
;; add paredit-mode to all mode-hooks
(add-hook (intern (concat (symbol-name mode) "-hook")) ’paredit-mode))

17

3.1.1 Emacs Lisp

In emacs-1isp-mode we can enable eldoc-mode to display information about
a function or a variable in the echo area.

(add-hook ’emacs-1lisp-mode-hook ’turn-on-eldoc-mode)
(add-hook ’lisp-interaction-mode-hook ’turn-on-eldoc-mode)

3.1.2 Common lisp

I use Slime along with 1isp-mode to edit Common Lisp code. Slime provides
code evaluation and other great features, a must have for a Common Lisp
developer. |Quicklisp| is a library manager for Common Lisp, and you can
install Slime following the instructions from the site along with this snippet.

n

(when (file-exists-p "~/quicklisp/slime-helper.elc")
(load (expand-file-name "~/quicklisp/slime-helper.elc”)))

We can specify what Common Lisp program Slime should use (I use SBCL).
(setq inferior-lisp-program "shcl”)

To improve auto completion for Common Lisp editing we can use ac-slime
which uses slime completions as a source.

(add-hook ’slime-mode-hook ’set-up-slime-ac)
(add-hook ’slime-repl-mode-hook ’set-up-slime-ac)

(eval-after-load "auto-complete”
’(add-to-list ’ac-modes ’slime-repl-mode))

3.1.3 Scheme

Geiser| provides features similar to Slime for Scheme editing. Everything
works pretty much out of the box, we only need to add auto completion, and
specify which scheme-interpreter we prefer.

(add-hook ’geiser-mode-hook ’ac-geiser-setup)
(add-hook ’geiser-repl-mode-hook ’ac-geiser-setup)
(eval-after-load "auto-complete”

’(add-to-list ’ac-modes ’geiser-repl-mode))
(setq geiser-active-implementations ’(racket))

18

http://www.common-lisp.net/project/slime/
http://www.quicklisp.org/beta/
http://www.nongnu.org/geiser/

3.2 Java and C

The c-mode-common-hook is a general hook that work on all C-like languages
(C, C++, Java, etc...). I like being able to quickly compile using C-c C-c
(instead of M-x compile), a habit from latex-mode.

(defun c-setup ()
(local-set-key (kbd "C-c C-c") ’compile))

(require ’auto-complete-c-headers)
(add-to-list ’ac-sources ’ac-source-c-headers)

(add-hook ’c-mode-common-hook ’c-setup)

Some statements in Java appear often, and become tedious to write out. We
can use abbrevs to speed this up.

(define-abbrev-table ’java-mode-abbrev-table
"(("psv" "public static void main(String[] args) {"” nil 0)
("sopl” "System.out.println” nil 0)
("sop" "System.out.printf” nil 0)))

To be able to use the abbrev table defined above, abbrev-mode must be
activated.

(defun java-setup ()
(abbrev-mode t)
(setg-local compile-command (concat "javac " (buffer-name))))

(add-hook ’java-mode-hook ’java-setup)

3.3 Assembler

When writing assembler code I use # for comments. By defining comment-start
we can add comments using M-; like in other programming modes. Also in
assembler should one be able to compile using C-c C-c.

(defun asm-setup ()
(setq comment-start "#")
(local-set-key (kbd "C-c C-c") ’compile))

(add-hook ’asm-mode-hook ’asm-setup)

19

3.4 BIEX

. tex-files should be associated with latex-mode instead of tex-mode.
(add-to-1list ’auto-mode-alist ’("\\.tex\\’"” . latex-mode))

I like using the Minted| package for source blocks in IATEX. To make org use
this we add the following snippet.

(add-to-list ’org-latex-packages-alist ’("" "minted"))
(setq org-latex-listings ’'minted)

Because Minted uses Pygments (an external process), we must add the
-shell-escape option to the org-latex-pdf-process commands. The
tex-compile-commands variable controls the default compile command for
Tex- and KTEX-mode, we can add the flag with a rather dirty statement (if
anyone finds a nicer way to do this, please let me know).

(setq org-latex-pdf-process
(mapcar
(lambda (str)
(concat "pdflatex -shell-escape
(substring str (string-match "-" str))))
org-latex-pdf-process))

n

(setcar (cdr (cddaar tex-compile-commands)) " -shell-escape ")

3.5 Python

Jedi| offers very nice auto completion for python-mode. Mind that it is de-
pendent on some python programs as well, so make sure you follow the
instructions from the site.

;5 (setq jedi:server-command

B (cons "python3"” (cdr jedi:server-command))
HS python-shell-interpreter "python3")
(add-hook ’python-mode-hook ’jedi:setup)

(setq jedi:complete-on-dot t)

(add-hook ’python-mode-hook ’jedi:ac-setup)

20

https://code.google.com/p/minted/
https://code.google.com/p/minted/
http://pygments.org
http://tkf.github.io/emacs-jedi/released/

3.6 Haskell

haskell-doc-mode is similar to eldoc, it displays documentation in the echo
area. Haskell has several indentation modes - I prefer using haskell-indent.

(add-hook ’haskell-mode-hook ’turn-on-haskell-doc-mode)
(add-hook ’haskell-mode-hook ’turn-on-haskell-indent)

3.7 Matlab

Matlab is very similar to Octave, which is supported by Emacs. We just
need to let .m-files be associated with octave-mode.

(add-to-1list ’'matlab-shell-command-switches "-nosplash”)

21

	About
	Configurations
	Meta
	Package
	Mac OS X
	Require
	Sane defaults
	Modes
	Visual
	Ido
	Calendar
	Mail
	Flyspell
	Org
	Interactive functions
	Key bindings
	Advice

	Language mode specific
	Lisp
	Emacs Lisp
	Common lisp
	Scheme

	Java and C
	Assembler
	LaTeX
	Python
	Haskell
	Matlab

