mirror of
https://github.com/larstvei/SMT-for-IN3070.git
synced 2025-01-18 07:50:12 +00:00
Update examples
This commit is contained in:
parent
fb82ad5467
commit
324fb51fe3
@ -54,7 +54,9 @@ cry for help.
|
||||
$\mathcal{M}$ such that $\mathcal{M} \models \phi$. In general, this is an
|
||||
undecidable problem. However, there are theories within first order logic
|
||||
that are decidable. SMT solvers can produce models that satisfy a set of
|
||||
formulas for many useful theories, some of which are satisfiable.
|
||||
formulas for many useful theories, some of which are satisfiable. It is
|
||||
natural to think of SMT as a generalization of SAT, which is satisfiability
|
||||
for propositional logic.
|
||||
|
||||
The solver we will be using is [[https://github.com/Z3Prover/z3][Z3]].
|
||||
|
||||
@ -159,8 +161,8 @@ cry for help.
|
||||
- $P_{Int} = \{<, =\}$ where the predicate symbols $<, =$ has type signature
|
||||
$Int \times Int$.
|
||||
|
||||
In Z3, the type signature function- and predicate symbols informs Z3 of what
|
||||
theory it should apply.
|
||||
In Z3, the type signature of function- and predicate symbols informs Z3 of
|
||||
what theory it should apply.
|
||||
|
||||
* Back to the problem
|
||||
|
||||
@ -318,20 +320,20 @@ cry for help.
|
||||
Calling ~check_instance(example_instance())~ returns a model:
|
||||
|
||||
#+BEGIN_EXAMPLE
|
||||
[frozenset({0, 1}) = 83,
|
||||
frozenset({0, 2}) = 47,
|
||||
frozenset({0, 5}) = 30,
|
||||
frozenset({2, 3}) = 0,
|
||||
frozenset({1, 2}) = 3,
|
||||
frozenset({1, 3}) = 60,
|
||||
frozenset({2, 5}) = 0,
|
||||
frozenset({1, 5}) = 0,
|
||||
frozenset({2, 4}) = 60,
|
||||
frozenset({4, 5}) = 0,
|
||||
frozenset({0, 4}) = 0,
|
||||
[frozenset({0, 1}) = 150,
|
||||
frozenset({0, 2}) = 10,
|
||||
frozenset({2, 3}) = 56,
|
||||
frozenset({1, 3}) = 0,
|
||||
frozenset({2, 5}) = 7,
|
||||
frozenset({3, 5}) = 0,
|
||||
frozenset({3, 4}) = 0,
|
||||
frozenset({0, 5}) = 0,
|
||||
frozenset({1, 2}) = 0,
|
||||
frozenset({4, 5}) = 23,
|
||||
frozenset({1, 5}) = 0,
|
||||
frozenset({0, 3}) = 0,
|
||||
frozenset({0, 4}) = 0,
|
||||
frozenset({2, 4}) = 37,
|
||||
frozenset({3, 4}) = 0,
|
||||
frozenset({1, 4}) = 0]
|
||||
#+END_EXAMPLE
|
||||
|
||||
@ -355,12 +357,19 @@ cry for help.
|
||||
This outputs the something like:
|
||||
|
||||
#+BEGIN_EXAMPLE
|
||||
{0, 1}: 23
|
||||
{0, 2}: 110
|
||||
{0, 5}: 23
|
||||
{1, 3}: 60
|
||||
{1, 5}: 7
|
||||
{1, 4}: 60
|
||||
0: 160/160
|
||||
1: 150/150
|
||||
2: 110/110
|
||||
3: 56/60
|
||||
4: 60/60
|
||||
5: 30/30
|
||||
|
||||
0, 1: 150
|
||||
0, 2: 10
|
||||
2, 3: 56
|
||||
2, 4: 37
|
||||
2, 5: 7
|
||||
4, 5: 23
|
||||
#+END_EXAMPLE
|
||||
|
||||
Note the /something like/. There are multiple ways to satisfy this set of
|
||||
@ -410,12 +419,19 @@ cry for help.
|
||||
example).
|
||||
|
||||
#+BEGIN_EXAMPLE
|
||||
{2, 3}: 56
|
||||
{0, 1}: 137
|
||||
{2, 5}: 7
|
||||
{0, 5}: 23
|
||||
{2, 4}: 47
|
||||
{1, 4}: 13
|
||||
0: 160/160
|
||||
1: 150/150
|
||||
2: 110/110
|
||||
3: 60/60
|
||||
4: 60/60
|
||||
5: 26/30
|
||||
|
||||
0, 1: 137
|
||||
0, 5: 23
|
||||
1, 4: 13
|
||||
2, 3: 60
|
||||
2, 4: 47
|
||||
2, 5: 3
|
||||
#+END_EXAMPLE
|
||||
|
||||
** Dealing with /should/
|
||||
@ -459,12 +475,19 @@ cry for help.
|
||||
#+END_SRC
|
||||
|
||||
#+BEGIN_EXAMPLE
|
||||
{0, 2}: 50
|
||||
{1, 3}: 60
|
||||
{1, 5}: 7
|
||||
{2, 4}: 60
|
||||
{0, 5}: 23
|
||||
{0, 1}: 83
|
||||
0: 160/160
|
||||
1: 150/150
|
||||
2: 106/110
|
||||
3: 60/60
|
||||
4: 60/60
|
||||
5: 30/30
|
||||
|
||||
0, 1: 87
|
||||
0, 2: 43
|
||||
0, 5: 30
|
||||
1, 2: 3
|
||||
1, 3: 60
|
||||
2, 4: 60
|
||||
#+END_EXAMPLE
|
||||
|
||||
** Optimize for capacities
|
||||
|
Loading…
Reference in New Issue
Block a user